By Ильин В.П.
Read or Download Численный анализ PDF
Similar computational mathematicsematics books
Emergent computation: Emphasizing bioinformatics
Emergent Computation emphasizes the interrelationship of the several sessions of languages studied in mathematical linguistics (regular, context-free, context-sensitive, and sort zero) with points to the biochemistry of DNA, RNA, and proteins. moreover, features of sequential machines resembling parity checking and semi-groups are prolonged to the learn of the Biochemistry of DNA, RNA, and proteins.
Reviews in Computational Chemistry Volume 2
This moment quantity of the sequence 'Reviews in Computational Chemistry' explores new purposes, new methodologies, and new views. the subjects lined contain conformational research, protein folding, strength box parameterizations, hydrogen bonding, cost distributions, electrostatic potentials, digital spectroscopy, molecular estate correlations, and the computational chemistry literature.
Introduction to applied numerical analysis
This publication by means of a well-known mathematician is acceptable for a single-semester direction in utilized numerical research for computing device technology majors and different upper-level undergraduate and graduate scholars. even though it doesn't conceal genuine programming, it specializes in the utilized issues such a lot pertinent to technology and engineering execs.
Extra info for Численный анализ
Example text
T❻✂➁✏❽➝➉✺➄✬➄➆❻✂➁➞➨❜➁✏↔➒❼➂➊❢➊✂❼➂➊✂↔❯➎✺➟❑➄➆❻✂➁➞❿➂❼➂➊❢➁➣➙ ➔❩➉Ô➄➍➃t❻✂➁✏❽➝➉✺➄✬➄➆❻✂➁➞➁✫➊✂➐✦➎➣➟❑❿➂❼❾➊✂➁➣➙ • \( • \) • \| ❿❾➁✏➟ ➄❊➺❫➎➒→✸➁✫➊✂❼❾➊✂↔✴➼●➨✂➇➆➉➣➃t➫➣➁➧➄✤➙ ➇➏❼➂↔➒❻➌➄❊➺❫➃✫❿❾➎➒❽➆❼❾➊✂↔✴➼●➨✂➇➆➉➣➃t➫➣➁➧➄✤➙ ➄➆➇➍➉➣➊❢❽➆❿➮➉Ô➄➍➁✫❽✬❼❾➊➌➄➍➎ ∪ ➙ ❺ ❻✴➅✂❽✏➭ Ò ❲ + ✗ ➄➍➇➍➉✺➊✂❽➆❿➂➉✺➄➍➁✏❽●❼➂➊➌➄➆➎ ✬ ➙❐✒➜➎➣➄➍❼❾➃✫➁➜➄➍❻❪➉✺➄●❼➂➊ ➽❊➾ ➉➒➚➓➪✙➄➆❻✂➁✫➇➏➁ ( ∪ ) ? \(a\|b\)+d? x ➄➍➉➣➫➣➁✬➄➍➎✘❽➏➁✫➁❨➡❨❻✂➁✏➄➆❻✂➁✫➇✪➎➒➇✝➊❢➎➣➄ A ê✪✫✝➸❁❼❾➐✂➁✫➊➌➄➍❿➥➤➒0➭➌➄➍1❻❢➁➱➉✺➊✂❽➏n−1 ➡✍➁✫➇✪➐✂➁✏→❜➁✏➊✂➐✂❽✉➎➒➊➢➨❜➎➣➄➆❻ x ∈ L(A) ➉➣➊✂➐ ✏ ➙ ✒➱➎✺➄➍❼➂➃✏➁➜➄➆❻❪➉✺➄ ❼➥➟✩➉➣➊✂➐✧➎➒➊✂❿❾➤➢❼➥➟✼➄➆❻✂➁✫➇➏➁➀➉➣➇➏➁ ❽➏➅✂➃t❻✿➄➍❻❪➉Ô➄ A ➺ à★⑥ ✑➌➼ x x ∈ L(A) x x x qi , i < n + 1 xn−1 i0 = q0 →0 q1 →1 q2 →2 q2 .
Xj i0 −→ qj+1 ❼➥➬ qj+1 ∈ Hj+1 å➜➁✫➊✂➃✏➁➣➭ ❼❾➬ ➙✉ý❪➎➒➇✉➄➍❻✂➁✏➊✡➄➆❻✂➁✫➇➏➁✘➁➧➻➑❼➂❽↕➄➍❽❨➉➣➊✡➉✺➃✫➃✫➁✏→❢➄➍❼❾➊✂↔➢❽➏➄➍➉✺➄➍➁➀❼❾➊ x ∈ L(A) Hn ∩ F = ∅ ➙➀å➱➁✏➇➆➁❝➁✫➉➣➃t❻➋❽➏➄➆➁✫→☞➄➍➉➣➫➣➁✏❽➝➄➍❼❾➔✧➁❊➵✴➅❪➉➣➐✂➇➆➉✺➄➍❼❾➃➈❼❾➊➓➄➍❻✂➁➈➊✴➅✂➔❝➨✸➁✫➇➀➎➣➟❂❽➏➄t➉Ô➄➍➁✫❽✏ç➜➟❫➎➣➇➱↔➒❼➥➸➒➁✏➊ Hn ➭✂➡●➁➞➃✏➎➒➔✧→❢➅❢➄➍➁ ➨➌➤✖➐✂➎➣❼➂➊✂↔ ➔✧➉➣➊➌➤✿❿❾➎➑➎➣➫❁➅❢→✂❽⑦➟❫➎➒➇✬➁✏➸➣➁✫➇↕➤ ➙✪å➜➎❄➡✍➁✏➸➣➁✫➇✏➭ Hj Hj+1 Q q ∈ Hj ➄➆❻✂❼➂❽➈➊❁➅❢➔❝➨❜➁✏➇❯❼➂❽➈➨❪➉➣❽➆❼❾➃✤➉➣❿❾❿❾➤➩➨✸➎➒➅✂➊✂➐✂➁✏➐❅➟❫➎➒➇✛↔➒❼➥➸➒➁✏➊ ➙ ✰ ➎☞➄➆❻✂➁❩➄➍❼❾➔✧➁✧➇➆➁✏➵❁➅❢❼➂➇➆➁✏➔✧➁✏➊➌➄❯❼➂❽ A ➐✂➎✷➡❨➊✣➄➍➎➩➉➩➃✏➎➒➊✂❽↕➄t➉➣➊➌➄✧➐✂➁✫→✸➁✫➊✂➐❢❼➂➊✂↔➩➎➒➊ ➄➍❼❾➔✧➁✏❽❝➄➍❻✂➁✡❿➂➁✏➊✂↔➣➄➆❻Û➎➣➟ ➙✢❺✬❻✂❼➂❽☎❼➂❽❯➔✛➅✂➃t❻ A ➨✸➁✏➄➏➄➍➁✫➇✏➙✡å➱➎✷➡✍➁✏➸➒➁✏➇✫➭✝❼❾➊➳→✂➇➆➉➣➃✏➄➆❼➂➃✫➉➣❿✝➄➍➁✫➇➏➔✧❽➞ ➄➍❻❢❼➂❽❊❼➂❽➞❽➏➄➆❼➂❿➂❿✝➊❢➎➣➄✛↔➣➎➑➎❁➐➳➁✏x➊✂➎➒➅✂↔➣❻♥✬ ➙ ❞●➁✫➃✫➉➣➅✂❽➏➁ ➄➆❻✂➁❯➃✫➎➒➊❢❽➏➄t➉✺➊✴➄➞❼➥➄➝➄➍➉➣➫➣➁✏❽➞➄➆➎✖➃✫➎➒➔☎→✂➅❢➄➆➁❯➉✿❽➆❼❾➊✂↔➒❿❾➁✛❽➏➄➆➁✫→➩❼➂❽➝➄➆➎➑➎❩❿➮➉➣➇➏↔➒➁➣➙➞❺✬❻✂❼❾❽➀❼➂❽➀➨✸➁✫➃✫➉➣➅✂❽➏➁ ➄➍➎ ➙è➯➶➟➞➄➍❻✂➁➋❽↕➄➍➇➆❼❾➊✂↔➦❼❾❽❩➸➒➁✏➇➏➤❵❿❾➎➒➊✂↔✂➭⑦➄➆❻✂❼➂❽ ➡✍➁➋➇➆➁✏➃✫➎➒➔☎→✂➅❢➄➆➁➓➄➍❻✂➁☞➄➆➇➍➉➣➊❢❽➆❼❾➄➆❼➂➎➒➊ Hj Hj+1 ➔☎➁✤➉➣➊❢❽❨➄➆❻❪➉✺➄❨➡✍➁➈➇➏➁✫➃✫➎➣➔✧→✂➅➑➄➍➁➞➄➍❻✂➁➞❽➍➉✺➔✧➁➞→✂➇➏➎➒➨✂❿➂➁✏➔❶➎✷➸➒➁✏➇➀➉➣➊✂➐✦➎✷➸➒➁✏➇✫➙⑦➯➲➊✂❽↕➄➍➁✫➉➣➐♥➭❪➡●➁❊➃✤➉✺➊ →✂➇➏➁✫➃✏➎➒➔✧→❢➅❢➄➍➁❨➉➣❿❾❿➑➄➆❻✂➁⑦➄➍➇➆➉➣➊✂❽➆❼➥➄➍❼❾➎➒➊✂❽✫➙❑➯➶➄✝➄➍➅✂➇➏➊✂❽✝➎➒➅❢➄✝➄➆❻❪➉✺➄✝➡✍➁❨➃✤➉➣➊➢➐✂s➁ ✮❪➊✂➁➜➉➣➊☎➉➣➅❢➄➆➎➒➔❩➉Ô➄➍➎➒➊ ❼❾➊✡➄➆❻✂❼➂❽⑦➡●➉✤➤✖➄➍❻❪➉Ô➄✬➡●➁➞➃✤➉✺➊➠➅✂❽➏➁➈❼❾➊✿➄➍❻✂➁➞→✂❿➂➉➣➃✫➁➞➎➣➟ ➙ A ❀②❋➁❼➂s➃ A = A, Q, i , F, δ ➣✶⑤❩⑨✽➥➆➟➠➂s➃ Q : U ∩ F = ∅} ❷✇❸❛❹✚❺❼❻❾❽❫❻✕❿✽❺ ➺ à★⑥ ✳➒➼ ➄ 0 δ ℘ = { H, a, J : ➋ ➊❙➝✈⑦✘➟❾➟ q∈H ↔✻➉❶➂s⑨ ④③ ➂✇⑦✘⑨í⑦✘➢❱➃➻➊❙➞➆⑦✘➃❢➊❙⑨✽➣ ➈➢❱➃ ➃❾➉❶➂s➝➸➂ F ℘ := {U ⊆ ➅ a ➦ q ∈J q→q} ⑥ ➺ à★⑥ ❚➌➼ A℘ = A, ℘(Q), {i0 }, F ℘ , δ ℘ ➅✲➤➑⑦✘➟❾➟➠➂➑➥➆➃✢➉❶➂✼→ ❛➔❤↕❝➯✟→✁➯✓➒✞➏✞➍ ÿ↕ ➙ ➣ A ➦ ❆❈ ❀⑧⑨⑤ ✡⑦ ☎⑩ ❷❶ ❷✇❸❛❹✚❺❼❻❾❽❫❻✕❿✽❺ ❩⑨②⑦✘➢❱➃➻➊❙➞➆⑦✘➃➻➊❙⑨ ➅ ✻→✁➒➸→✁➳ ❨➏➻➯Ò➏➻➎✘➒❢➏➑➐ ➋❐➋ ➊❙➝➆⑦✘➟❾➟ ⑦✘⑨✽➥ ➦ ➦ q ∈Q a∈A ➃❾➉❶➂s➝➸➂ ➅✈⑦✘➃➈➞❑➊★➅s➃✿➊❙⑨❜➂ ➅s➢➹➤➡➉✪➃❾➉♥⑦✘➃ ➣ a ➦ q ∈Q q→q à➒à ➙ ➾ ➎➒➔☎→✂❿➂➁þ➻❢❼➥➄➲➤✖➉➣➊❢➐➓➚✦❼➂➊✂❼❾➔❩➉➣❿❜➛➝➅❢➄➆➎➒➔✧➉✺➄t➉ ✜ ⑥ ➯➶➄✛❼➂❽❊➃✫❿➂➁✫➉➣➇➈➄➆❻❪➉✺➄❊➟❫➎➒➇❝➉✦➐✂➁✏➄➆➁✫➇➏➔✧❼❾➊✂❼➂❽↕➄➍❼➂➃☎➉➣➊❢➐ ➄➍➎➣➄➍➉➣❿✍➉➣➅❢➄➍➎➣➔❩➉✺➄➆➎➒➊♥➭❑➉➣❿➂❿✝➡✍➁✿❻❪➉✤➸➒➁✧➄➍➎☞➐✂➎ ❼❾❽➝➄➍➎✿❿❾➎➑➎➣➫✦➅❢→✙➄➆❻✂➁❯➊✂➁þ➻➑➄➞❽↕➄t➉✺➄➆➁❝❼➂➊✣➺ ★à ⑥ ✑➌➼t➭✼➡❨❻✂❼❾➃t❻✙➁➧➻➑❼➂❽↕➄➍❽➞➉➣➊✂➐➋❼❾❽➀➅✂➊✂❼❾➵✴➅✂➁➣➙➈ý❪➎➒➇➱➄➆❻✂➁✫❽➏➁ ➉➣➅➑➄➍➎➒➔✧➉✺➄t➉➑➭❢➇➆➁✏➃✫➎➒↔➣➊✂➠❼ ô✏❼➂➊✂↔❝➄➆❻✂➁➞❿➮➉➣➊✂↔➣➅❪➉➣↔➒➁➀❼❾❽✬❿➂❼❾➊✂➁✤➉➣➇●❼➂➊✖➄➍❻✂➁➞❽↕➄➍➇➆❼❾➊✂↔✂➙ ▲☛ ❹❸❺♠ ❝❻ ❯❋ ✑✏ ã ❸✡❿➹Ï❫❸ ❼ ➀ ❼➊❙➝✇➂s➜✘➂s➝⑩❂⑦✘➢❱➃➻➊❙➞➆⑦✘➃❢➊❙⑨ ➇☞➃❾➉❶➂✬➂ ❃➩❶➊❙⑨❜➂s⑨❶➃ ⑦✘➟ ℘ ➅➫➃❢➊❙➃ó⑦✘➟ ⑦✘⑨✽➥Û➥✛➂ A ➦ A ➦ ➣ ➃➻➂s➝➞ ⑨ ➅s➃ ➤➛➣ ➧➊❙➝➸➂➡➊❙➜✘➂s➝➸➇ ℘ L(A ) = L(A) ➦ ➦ ➦ ✜✣ ✰ ➎❢➭♥➄➍❻✂➁❯➇➏➁✫➃✫❼❾→❜➁❝➄➆➎✡➉✺➄➆➄➍➉➣➃t➫➓➄➆❻✂➁❯→✂➇➆➎➣➨✂❿➂➁✏➔ ê ❼➂❽➱➄➍❻✂❼❾❽✫ç❩✮❪➇➏❽➏➄➞➃✏➎➒➔✧→❢➅❢➄➍➁ ℘ x ∈ L(A) ➉➣➊❢➐✛➄➍❻✂➁✏➊❝➃t❻✂➁✏➃t➫ ➙ ✰ ❼➂➊✂➃✏➁✉➄➆❻✂➁●❿➂➉✺➄➆➄➆➁✫➇❏❼➂❽❏➐✂➁✏➄➆➁✫➇➏➔✧❼❾➊✂❼➂❽↕➄➍❼➂➃✺➭Ô➄➆❻✂➁✍➄➆❼➂➔☎➁✪➊✂➁✫➁✏➐✂A➁✫➐ ❼❾❽➈➉✺➃✏➄➍➅✂➉➣❿➂❿➥➤☞❿➂❼❾➊✂➁✤➉✺x➇✘❼➂∈➊✙L(A)?
Xj i0 −→ qj+1 ❼➥➬ qj+1 ∈ Hj+1 å➜➁✫➊✂➃✏➁➣➭ ❼❾➬ ➙✉ý❪➎➒➇✉➄➍❻✂➁✏➊✡➄➆❻✂➁✫➇➏➁✘➁➧➻➑❼➂❽↕➄➍❽❨➉➣➊✡➉✺➃✫➃✫➁✏→❢➄➍❼❾➊✂↔➢❽➏➄➍➉✺➄➍➁➀❼❾➊ x ∈ L(A) Hn ∩ F = ∅ ➙➀å➱➁✏➇➆➁❝➁✫➉➣➃t❻➋❽➏➄➆➁✫→☞➄➍➉➣➫➣➁✏❽➝➄➍❼❾➔✧➁❊➵✴➅❪➉➣➐✂➇➆➉✺➄➍❼❾➃➈❼❾➊➓➄➍❻✂➁➈➊✴➅✂➔❝➨✸➁✫➇➀➎➣➟❂❽➏➄t➉Ô➄➍➁✫❽✏ç➜➟❫➎➣➇➱↔➒❼➥➸➒➁✏➊ Hn ➭✂➡●➁➞➃✏➎➒➔✧→❢➅❢➄➍➁ ➨➌➤✖➐✂➎➣❼➂➊✂↔ ➔✧➉➣➊➌➤✿❿❾➎➑➎➣➫❁➅❢→✂❽⑦➟❫➎➒➇✬➁✏➸➣➁✫➇↕➤ ➙✪å➜➎❄➡✍➁✏➸➣➁✫➇✏➭ Hj Hj+1 Q q ∈ Hj ➄➆❻✂❼➂❽➈➊❁➅❢➔❝➨❜➁✏➇❯❼➂❽➈➨❪➉➣❽➆❼❾➃✤➉➣❿❾❿❾➤➩➨✸➎➒➅✂➊✂➐✂➁✏➐❅➟❫➎➒➇✛↔➒❼➥➸➒➁✏➊ ➙ ✰ ➎☞➄➆❻✂➁❩➄➍❼❾➔✧➁✧➇➆➁✏➵❁➅❢❼➂➇➆➁✏➔✧➁✏➊➌➄❯❼➂❽ A ➐✂➎✷➡❨➊✣➄➍➎➩➉➩➃✏➎➒➊✂❽↕➄t➉➣➊➌➄✧➐✂➁✫→✸➁✫➊✂➐❢❼➂➊✂↔➩➎➒➊ ➄➍❼❾➔✧➁✏❽❝➄➍❻✂➁✡❿➂➁✏➊✂↔➣➄➆❻Û➎➣➟ ➙✢❺✬❻✂❼➂❽☎❼➂❽❯➔✛➅✂➃t❻ A ➨✸➁✏➄➏➄➍➁✫➇✏➙✡å➱➎✷➡✍➁✏➸➒➁✏➇✫➭✝❼❾➊➳→✂➇➆➉➣➃✏➄➆❼➂➃✫➉➣❿✝➄➍➁✫➇➏➔✧❽➞ ➄➍❻❢❼➂❽❊❼➂❽➞❽➏➄➆❼➂❿➂❿✝➊❢➎➣➄✛↔➣➎➑➎❁➐➳➁✏x➊✂➎➒➅✂↔➣❻♥✬ ➙ ❞●➁✫➃✫➉➣➅✂❽➏➁ ➄➆❻✂➁❯➃✫➎➒➊❢❽➏➄t➉✺➊✴➄➞❼➥➄➝➄➍➉➣➫➣➁✏❽➞➄➆➎✖➃✫➎➒➔☎→✂➅❢➄➆➁❯➉✿❽➆❼❾➊✂↔➒❿❾➁✛❽➏➄➆➁✫→➩❼➂❽➝➄➆➎➑➎❩❿➮➉➣➇➏↔➒➁➣➙➞❺✬❻✂❼❾❽➀❼➂❽➀➨✸➁✫➃✫➉➣➅✂❽➏➁ ➄➍➎ ➙è➯➶➟➞➄➍❻✂➁➋❽↕➄➍➇➆❼❾➊✂↔➦❼❾❽❩➸➒➁✏➇➏➤❵❿❾➎➒➊✂↔✂➭⑦➄➆❻✂❼➂❽ ➡✍➁➋➇➆➁✏➃✫➎➒➔☎→✂➅❢➄➆➁➓➄➍❻✂➁☞➄➆➇➍➉➣➊❢❽➆❼❾➄➆❼➂➎➒➊ Hj Hj+1 ➔☎➁✤➉➣➊❢❽❨➄➆❻❪➉✺➄❨➡✍➁➈➇➏➁✫➃✫➎➣➔✧→✂➅➑➄➍➁➞➄➍❻✂➁➞❽➍➉✺➔✧➁➞→✂➇➏➎➒➨✂❿➂➁✏➔❶➎✷➸➒➁✏➇➀➉➣➊✂➐✦➎✷➸➒➁✏➇✫➙⑦➯➲➊✂❽↕➄➍➁✫➉➣➐♥➭❪➡●➁❊➃✤➉✺➊ →✂➇➏➁✫➃✏➎➒➔✧→❢➅❢➄➍➁❨➉➣❿❾❿➑➄➆❻✂➁⑦➄➍➇➆➉➣➊✂❽➆❼➥➄➍❼❾➎➒➊✂❽✫➙❑➯➶➄✝➄➍➅✂➇➏➊✂❽✝➎➒➅❢➄✝➄➆❻❪➉✺➄✝➡✍➁❨➃✤➉➣➊➢➐✂s➁ ✮❪➊✂➁➜➉➣➊☎➉➣➅❢➄➆➎➒➔❩➉Ô➄➍➎➒➊ ❼❾➊✡➄➆❻✂❼➂❽⑦➡●➉✤➤✖➄➍❻❪➉Ô➄✬➡●➁➞➃✤➉✺➊➠➅✂❽➏➁➈❼❾➊✿➄➍❻✂➁➞→✂❿➂➉➣➃✫➁➞➎➣➟ ➙ A ❀②❋➁❼➂s➃ A = A, Q, i , F, δ ➣✶⑤❩⑨✽➥➆➟➠➂s➃ Q : U ∩ F = ∅} ❷✇❸❛❹✚❺❼❻❾❽❫❻✕❿✽❺ ➺ à★⑥ ✳➒➼ ➄ 0 δ ℘ = { H, a, J : ➋ ➊❙➝✈⑦✘➟❾➟ q∈H ↔✻➉❶➂s⑨ ④③ ➂✇⑦✘⑨í⑦✘➢❱➃➻➊❙➞➆⑦✘➃❢➊❙⑨✽➣ ➈➢❱➃ ➃❾➉❶➂s➝➸➂ F ℘ := {U ⊆ ➅ a ➦ q ∈J q→q} ⑥ ➺ à★⑥ ❚➌➼ A℘ = A, ℘(Q), {i0 }, F ℘ , δ ℘ ➅✲➤➑⑦✘➟❾➟➠➂➑➥➆➃✢➉❶➂✼→ ❛➔❤↕❝➯✟→✁➯✓➒✞➏✞➍ ÿ↕ ➙ ➣ A ➦ ❆❈ ❀⑧⑨⑤ ✡⑦ ☎⑩ ❷❶ ❷✇❸❛❹✚❺❼❻❾❽❫❻✕❿✽❺ ❩⑨②⑦✘➢❱➃➻➊❙➞➆⑦✘➃➻➊❙⑨ ➅ ✻→✁➒➸→✁➳ ❨➏➻➯Ò➏➻➎✘➒❢➏➑➐ ➋❐➋ ➊❙➝➆⑦✘➟❾➟ ⑦✘⑨✽➥ ➦ ➦ q ∈Q a∈A ➃❾➉❶➂s➝➸➂ ➅✈⑦✘➃➈➞❑➊★➅s➃✿➊❙⑨❜➂ ➅s➢➹➤➡➉✪➃❾➉♥⑦✘➃ ➣ a ➦ q ∈Q q→q à➒à ➙ ➾ ➎➒➔☎→✂❿➂➁þ➻❢❼➥➄➲➤✖➉➣➊❢➐➓➚✦❼➂➊✂❼❾➔❩➉➣❿❜➛➝➅❢➄➆➎➒➔✧➉✺➄t➉ ✜ ⑥ ➯➶➄✛❼➂❽❊➃✫❿➂➁✫➉➣➇➈➄➆❻❪➉✺➄❊➟❫➎➒➇❝➉✦➐✂➁✏➄➆➁✫➇➏➔✧❼❾➊✂❼➂❽↕➄➍❼➂➃☎➉➣➊❢➐ ➄➍➎➣➄➍➉➣❿✍➉➣➅❢➄➍➎➣➔❩➉✺➄➆➎➒➊♥➭❑➉➣❿➂❿✝➡✍➁✿❻❪➉✤➸➒➁✧➄➍➎☞➐✂➎ ❼❾❽➝➄➍➎✿❿❾➎➑➎➣➫✦➅❢→✙➄➆❻✂➁❯➊✂➁þ➻➑➄➞❽↕➄t➉✺➄➆➁❝❼➂➊✣➺ ★à ⑥ ✑➌➼t➭✼➡❨❻✂❼❾➃t❻✙➁➧➻➑❼➂❽↕➄➍❽➞➉➣➊✂➐➋❼❾❽➀➅✂➊✂❼❾➵✴➅✂➁➣➙➈ý❪➎➒➇➱➄➆❻✂➁✫❽➏➁ ➉➣➅➑➄➍➎➒➔✧➉✺➄t➉➑➭❢➇➆➁✏➃✫➎➒↔➣➊✂➠❼ ô✏❼➂➊✂↔❝➄➆❻✂➁➞❿➮➉➣➊✂↔➣➅❪➉➣↔➒➁➀❼❾❽✬❿➂❼❾➊✂➁✤➉➣➇●❼➂➊✖➄➍❻✂➁➞❽↕➄➍➇➆❼❾➊✂↔✂➙ ▲☛ ❹❸❺♠ ❝❻ ❯❋ ✑✏ ã ❸✡❿➹Ï❫❸ ❼ ➀ ❼➊❙➝✇➂s➜✘➂s➝⑩❂⑦✘➢❱➃➻➊❙➞➆⑦✘➃❢➊❙⑨ ➇☞➃❾➉❶➂✬➂ ❃➩❶➊❙⑨❜➂s⑨❶➃ ⑦✘➟ ℘ ➅➫➃❢➊❙➃ó⑦✘➟ ⑦✘⑨✽➥Û➥✛➂ A ➦ A ➦ ➣ ➃➻➂s➝➞ ⑨ ➅s➃ ➤➛➣ ➧➊❙➝➸➂➡➊❙➜✘➂s➝➸➇ ℘ L(A ) = L(A) ➦ ➦ ➦ ✜✣ ✰ ➎❢➭♥➄➍❻✂➁❯➇➏➁✫➃✫❼❾→❜➁❝➄➆➎✡➉✺➄➆➄➍➉➣➃t➫➓➄➆❻✂➁❯→✂➇➆➎➣➨✂❿➂➁✏➔ ê ❼➂❽➱➄➍❻✂❼❾❽✫ç❩✮❪➇➏❽➏➄➞➃✏➎➒➔✧→❢➅❢➄➍➁ ℘ x ∈ L(A) ➉➣➊❢➐✛➄➍❻✂➁✏➊❝➃t❻✂➁✏➃t➫ ➙ ✰ ❼➂➊✂➃✏➁✉➄➆❻✂➁●❿➂➉✺➄➆➄➆➁✫➇❏❼➂❽❏➐✂➁✏➄➆➁✫➇➏➔✧❼❾➊✂❼➂❽↕➄➍❼➂➃✺➭Ô➄➆❻✂➁✍➄➆❼➂➔☎➁✪➊✂➁✫➁✏➐✂A➁✫➐ ❼❾❽➈➉✺➃✏➄➍➅✂➉➣❿➂❿➥➤☞❿➂❼❾➊✂➁✤➉✺x➇✘❼➂∈➊✙L(A)?