By Christian Kanzow
Dieses Buch gibt eine umfassende Darstellung der wichtigsten Verfahren zur numerischen L?sung von linearen Gleichungssystemen. Es ben?tigt zum Verst?ndnis nur sehr geringe mathematische Vorkenntnisse, wie sie meist schon nach einem einsemestrigen Kurs in einem mathematischen oder ingenieurwissenschaftlichen Studiengang vorliegen. Aus diesem Grunde wendet sich das Buch nicht nur an Studierende der Mathematik, Wirtschaftsmathematik oder Technomathematik, sondern auch an den Natur- und Ingenieurwissenschaftler, der in vielen praktischen Anwendungen mit der L?sung von linearen Gleichungssystemen konfrontiert wird.
Inhaltlich besch?ftigt sich das Buch sowohl mit den direkten als auch den iterativen Verfahren. Dabei wird gro?er Wert auf eine sorgf?ltige Herleitung dieser Verfahren gelegt. Ausserdem enth?lt das Buch sehr detaillierte Pseudocodes, mit deren Hilfe sich die jeweiligen Verfahren in einer beliebigen Programmiersprache sofort auf dem laptop realisieren lassen.
Im Einzelnen werden folgende Themenkreise behandelt: Direkte Verfahren f?r lineare Gleichungssysteme, Orthogonalisierungsverfahren f?r lineare Ausgleichsprobleme, Splitting-Methoden, CG-, GMRES- und zahlreiche weitere Krylov-Raum-Methoden, Mehrgitterverfahren.
Read Online or Download Numerik linearer Gleichungssysteme PDF
Best computational mathematicsematics books
Emergent computation: Emphasizing bioinformatics
Emergent Computation emphasizes the interrelationship of different sessions of languages studied in mathematical linguistics (regular, context-free, context-sensitive, and kind zero) with elements to the biochemistry of DNA, RNA, and proteins. additionally, features of sequential machines equivalent to parity checking and semi-groups are prolonged to the learn of the Biochemistry of DNA, RNA, and proteins.
Reviews in Computational Chemistry Volume 2
This moment quantity of the sequence 'Reviews in Computational Chemistry' explores new functions, new methodologies, and new views. the subjects lined comprise conformational research, protein folding, strength box parameterizations, hydrogen bonding, cost distributions, electrostatic potentials, digital spectroscopy, molecular estate correlations, and the computational chemistry literature.
Introduction to applied numerical analysis
This booklet through a sought after mathematician is suitable for a single-semester path in utilized numerical research for laptop technological know-how majors and different upper-level undergraduate and graduate scholars. even though it doesn't conceal genuine programming, it makes a speciality of the utilized themes so much pertinent to technology and engineering execs.
Extra info for Numerik linearer Gleichungssysteme
Example text
INTEGER IFLAG,NTABLE, J,NEXT,NEXTL,NEXTR REAL F(NTABLE),TOL,X(NTABLE),XBAR, A(20),ERROR,PSIK,XK(20) C****** I N P U T ****** C XBAR POINT AT WHICH TO INTERPOLATE . ,NTABLE CONTAINS THE FUNCTION TABLE . C A S S U M P T I O N ... ) C NTABLE NUMBER OF ENTRIES IN FUNCTION TABLE. C TOL DESIRED ERROR BOUND . C****** O U T P U T ****** C TABLE THE INTERPOLATED FUNCTION VALUE . C IFLAG AN INTEGER, C =l , SUCCESSFUL EXECUTION , C =2 , UNABLE TO ACHIEVE DESIRED ERROR IN 20 STEPS, C =3 , XBAR LIES OUTSIDE OF TABLE RANGE.
Thus we can assume that the local round-off errors are either uniformly or normally distributed between their extreme values. Using statistical methods, we can then obtain the standard deviation, the variance of distribution, and estimates of the accumulated roundoff error. The statistical approach is considered in some detail by Hamming [1] and Henrici [2]. The method does involve substantial analysis and additional computer time, but in the experiments conducted to date it has obtained error estimates which are in remarkable agreement with experimentally available evidence.
Although we cannot where prove that a certain n is “large enough,” we can test the hypothesis that n is “large enough” by comparing with If for k near n, say for k = n - 2, n - 1, n, then we accept the hypothesis that n is “large enough” for to be true, and therefore accept Example Let p > 1. , within 1/10 of 1 for n = 3 and p = 2. 12005 · · · . is then a the error This notation carries over to functions of a real variable. If we say that the convergence is provided for some finite constant K and all small enough h.